
<u>Aufgabe 1:</u> Finde <u>eine</u> mögliche Lösung für R_1 , R_2 , R_3 , R_5 und R_6 ! (Es gibt unendliche viele Lösungen).

$$R_0 = 0.25 k \Omega$$
, $R_1 = R_2 = R_3$, $R_4 = 800 \Omega$, $R_5 = R6$

$$\frac{1}{R_{123}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \quad \text{Mit} \quad R_1 = R_2 = R_3 \quad \text{folgt:} \quad \frac{1}{R_{123}} = \frac{1}{R_1} + \frac{1}{R_1} + \frac{1}{R_1} = \frac{3}{R_1} \quad \Leftrightarrow \quad R_{123} = \frac{R_1}{3}$$

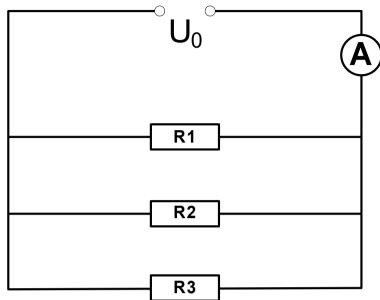
$$\frac{1}{R_{56}} = \frac{1}{R_5} + \frac{1}{R_6}$$
 Mit $R_5 = R_6$ folgt: $\frac{1}{R_{56}} = \frac{1}{R_5} + \frac{1}{R_5} = \frac{2}{R_5} \Leftrightarrow R_{56} = \frac{R_5}{2}$

$$R_{12356} = R_{123} + R_{56} = \frac{R_1}{3} + \frac{R_5}{2}$$

$$\frac{1}{R_0} = \frac{1}{R_4} + \frac{1}{R_{12356}} \iff \frac{1}{R_{12356}} = \frac{1}{R_0} - \frac{1}{R_4} = \frac{1}{750 \,\Omega} - \frac{1}{800 \,\Omega} = \frac{16}{4000 \,\Omega} + \frac{5}{4000 \,\Omega} = \frac{21}{4000 \,\Omega}$$

$$\Leftrightarrow R_{12356} = \frac{4000}{21} \Omega = 190,48 \Omega$$

$$\Leftrightarrow \frac{R_1}{3} + \frac{R_5}{2} = 190,48\Omega \mid -\frac{R_5}{2}$$


$$\Leftrightarrow \frac{R_1}{3} = 363,64\Omega - \frac{R_5}{2} \mid \cdot 3$$

$$\Leftrightarrow R_1 = 1090,91 \Omega - 1,5 R_5$$

Es gibt unendliche viele Lösungen: Wähle z.B. R_5 =200 Ω $\Rightarrow R_1$ =1090,91 Ω -1,5·200 Ω =1090,91 Ω -300 Ω =790,91 Ω

Mögliche Lösung: $R_1 = R_2 = R_3 = 790,91\Omega$; $R_5 = R_6 = 200\Omega$

<u>Aufgabe 2:</u> Berechne R₁ und R₂! (Der Innenwiderstand des Messgerätes wird vernachlässigt.)

 U_0 =60 V , I_0 =0,2 A , R_3 =0,6 k Ω , R_1 ist doppelt so groß wie R_2

$$R_{Ges} = \frac{U_0}{I_0} = \frac{60 V}{0.2 A} = 300 \Omega$$
 $R_1 = 2 R_2$

$$\frac{1}{R_{Ges}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{1}{2R_2} + \frac{1}{R_2} + \frac{1}{R_3} = \frac{3}{2R_2} + \frac{1}{R_3}$$

$$\Leftrightarrow \frac{3}{2} R_2 = \frac{1}{R_{Ges}} - \frac{1}{R_3} = \frac{1}{300 \,\Omega} - \frac{1}{600 \,\Omega} = \frac{1}{600 \,\Omega} \qquad \Leftrightarrow \frac{1}{R_2} = \frac{2}{3 \cdot 600 \,\Omega} = \frac{2}{1800 \,\Omega}$$

$$\Leftrightarrow R_2 = 900 \Omega \Rightarrow R_1 = 1800 \Omega$$