Physik Kl. 10a, HÜ Nr. 02 - Stromstärke/Elektrisches Feld - Lösung B 04.02.2015

Aufgabe 1: Stromstärke

Die folgende Tabelle gibt die Stärke der Ladung auf einer Kondensatorkugel zu bestimmten Zeiten

Zeit t in sek	0	10	40	100
Ladung Q in mC	0	20	100	10

Der zu- und abfließenden Ladung kann man Stromstärken zuordnen.

1.1 Berechne die mittlere Stromstärke in den ersten zehn Sekunden.

$$I = \frac{\Delta Q}{\Delta t} = \frac{20 mC - 0 mC}{10 s - 0 s} = \frac{20 mC}{10 s} = 2 mA$$

1.2 Berechne die mittlere Stromstärke zwischen Sekunde 10 und Sekunde 40.

$$I = \frac{\Delta Q}{\Delta t} = \frac{100 \, mC - 20 \, mC}{40 \, s - 10 \, s} = \frac{80}{30} \, \frac{mC}{s} = 2,67 \, mA$$

$$\frac{\textbf{1.3}}{I} \text{ Berechne die mittlere Stromstärke zwischen Sekunde 40 und Sekunde 100.} \\ I = \frac{\Delta Q}{\Delta t} = \frac{10 \, mC - 100 \, mC}{100 \, s - 40 \, s} = \frac{-90}{60} \, \frac{mC}{s} = -\textbf{1.5} \, \textbf{mA}$$

Aufgabe 2: Bewerte den Wahrheitsgehalt der folgenden Aussagen durch Ankreuzen. (Wertung: richtig: +1 Punkt; falsch: -1 Punkte; volle Punktzahl bei zwei ausgelassenen Bewertungen; Mindestpunktzahl: 0 Punkte).

Aussage		falsch	k.A.
Die Formel $I = \frac{\Delta Q}{\Delta t}$ gibt immer eine mittlere Stromstärke an.	x		
Feldlinien von magnetischen Feldern beginnen am Nordpol und enden am Südpol.		x	
Wenn zwischen den Platten eines geladenen Kondensators ein Strom fließt, muss das elektrische Feld zwischen den Platten zwingend schwächer werden.		x	
Wenn in einem I-t-Diagramm alle Werte negativ sind, muss die Stromstärke auch ein negatives Vorzeichen haben.	x		
Im Raum zwischen zwei negativen Ladungen kann es keine Feldlinien geben.		x	
Die Anzahl der elektrischen Feldlinien alleine sagt nichts über die Stärke des elektrischen Feldes aus.	x		
Feldlinien können nicht unendlich lang sein.		х	
Ladung verhält sich zu Strom wie Weg zu Geschwindigkeit.			
Wenn sehr viele Ladung vorhanden sind, wird die Stromstärke beim Abfließen der Ladung groß sein.		x	
Wenn die mittlere Stromstärke bei an den Kontakten eines Kondensators in einer bestimmten Zeitspanne genau null ist, haben sich während dieser Zeit die Ladungen auf dem Kondensator nicht verändert.		x	